Exercise 11

Consider an electrical cable running along the x-axis that is not well insulated from ground, so that leakage occurs along its entire length. Let $V(x, t)$ and $I(x, t)$ denote the voltage and current at point x in the wire at time t. These functions are related to each other by the system

$$
\frac{\partial V}{\partial x}=-L \frac{\partial I}{\partial t}-R I \quad \text { and } \quad \frac{\partial I}{\partial x}=-C \frac{\partial V}{\partial t}-G V,
$$

where L is the inductance, R is the resistance, C is the capacitance, and G is the leakage to ground. Show that V and I each satisfy

$$
\frac{\partial^{2} u}{\partial x^{2}}=L C \frac{\partial^{2} u}{\partial t^{2}}+(R C+L G) \frac{\partial u}{\partial t}+R G u
$$

which is called the telegraph equation.

Solution

Differentiate both sides of the equation on the left and right with respect to x and t, respectively.

$$
\left\{\begin{array} { l }
{ \frac { \partial V } { \partial x } = - L \frac { \partial I } { \partial t } - R I } \\
{ \frac { \partial I } { \partial x } = - C \frac { \partial V } { \partial t } - G V }
\end{array} \rightarrow \left\{\begin{array} { l }
{ \frac { \partial } { \partial x } (\frac { \partial V } { \partial x }) = \frac { \partial } { \partial x } (- L \frac { \partial I } { \partial t } - R I) } \\
{ \frac { \partial } { \partial t } (\frac { \partial I } { \partial x }) = \frac { \partial } { \partial t } (- C \frac { \partial V } { \partial t } - G V) }
\end{array} \rightarrow \left\{\begin{array}{l}
\frac{\partial^{2} V}{\partial x^{2}}=-L \frac{\partial^{2} I}{\partial x \partial t}-R \frac{\partial I}{\partial x} \\
\frac{\partial^{2} I}{\partial t \partial x}=-C \frac{\partial^{2} V}{\partial t^{2}}-G \frac{\partial V}{\partial t}
\end{array}\right.\right.\right.
$$

The mixed partial derivatives are equal by Clairaut's theorem,

$$
\frac{\partial^{2} I}{\partial x \partial t}=\frac{\partial^{2} I}{\partial t \partial x}
$$

so substitute the formulas for $I_{t x}$ and I_{x} into the one for $V_{x x}$.

$$
\begin{aligned}
\frac{\partial^{2} V}{\partial x^{2}} & =-L \frac{\partial^{2} I}{\partial x \partial t}-R \frac{\partial I}{\partial x} \\
& =-L\left(-C \frac{\partial^{2} V}{\partial t^{2}}-G \frac{\partial V}{\partial t}\right)-R\left(-C \frac{\partial V}{\partial t}-G V\right) \\
& =L C \frac{\partial^{2} V}{\partial t^{2}}+(R C+L G) \frac{\partial V}{\partial t}+R G V
\end{aligned}
$$

Therefore, V satisfies the telegraph equation. Now instead, differentiate both sides of the equation on the left and right with respect to t and x, respectively.

$$
\left\{\begin{array} { l }
{ \frac { \partial V } { \partial x } = - L \frac { \partial I } { \partial t } - R I } \\
{ \frac { \partial I } { \partial x } = - C \frac { \partial V } { \partial t } - G V }
\end{array} \rightarrow \left\{\begin{array} { l }
{ \frac { \partial } { \partial t } (\frac { \partial V } { \partial x }) = \frac { \partial } { \partial t } (- L \frac { \partial I } { \partial t } - R I) } \\
{ \frac { \partial } { \partial x } (\frac { \partial I } { \partial x }) = \frac { \partial } { \partial x } (- C \frac { \partial V } { \partial t } - G V) }
\end{array} \rightarrow \left\{\begin{array}{l}
\frac{\partial^{2} V}{\partial t \partial x}=-L \frac{\partial^{2} I}{\partial t^{2}}-R \frac{\partial I}{\partial t} \\
\frac{\partial^{2} I}{\partial x^{2}}=-C \frac{\partial^{2} V}{\partial x \partial t}-G \frac{\partial V}{\partial x}
\end{array}\right.\right.\right.
$$

The mixed partial derivatives are equal by Clairaut's theorem,

$$
\frac{\partial^{2} V}{\partial t \partial x}=\frac{\partial^{2} V}{\partial x \partial t}
$$

so substitute the formulas for $V_{t x}$ and V_{x} into the one for $I_{x x}$.

$$
\begin{aligned}
\frac{\partial^{2} I}{\partial x^{2}} & =-C \frac{\partial^{2} V}{\partial x \partial t}-G \frac{\partial V}{\partial x} \\
& =-C\left(-L \frac{\partial^{2} I}{\partial t^{2}}-R \frac{\partial I}{\partial t}\right)-G\left(-L \frac{\partial I}{\partial t}-R I\right) \\
& =L C \frac{\partial^{2} I}{\partial t^{2}}+(R C+L G) \frac{\partial I}{\partial t}+R G I
\end{aligned}
$$

Therefore, I satisfies the telegraph equation.

